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A B S T R A C T

We describe three methods ofcombating  co-channel in-
terference(CCI) : across-coupled phase-locked loop (CC-
PLL);  aphase-tracking  circuit (PTC), and joint Viterbi
estimation based on the maximum likelihood principle. In
the case of co-channel FM-modulated voice signals, the
CCPLL and PTC methods typically outperform the max-
imum likelihood estimators when the modulation param-
eters are dissimilar. However, as the modulation param-
eters become identical, joint Viterbi estimation provides
for a more robust estimate of the co-channel signals and
does not suffer w much from “signal switching” which
especially plagues the CCPLL approach. Good perfor-
mance for the PTC requires both dissimilar modulation
parameters and a priori knowledge of the co-channel sig-
nal a-mplitudes.  The CCPLL and joint Viterbi estimators,
on the other hand, incorporate accurate amplitude esti-
mates. In addition, application of the joint Viterbi  algo-
rithm to demodulating co-channel digital (BPSK)  signals
in a multipath environment is also discussed. It is shown
in this case that if the interference is sufficiently small, a
single trellis model is most effective in demodulating the
co-channel signals.

I N T R O D UC T IO N

Co-channel interference (CCI)  can be i] serious impair-
ment to any communication system. In this paper, we
first. focus on separating two CCI  FM signals of the form

r(t) = .41 cos(wlt  + 19[(t))  + .4z cos(w..  t + f3z(t)),
(1)

where  E),(t) = k, ~~ ~ ut, (.s)d.s and  ml (t) ;tro the mOdUlat-
ir)g sign;ds.  (Sllbsequcntly,  we \vill consi(l(~r t,he demodll-

“’rll{!  r(:se;tlch  (I,!scrihwl  in this papur  was (.,trrit,(l  out t),y !,he J e t
Pw)plllst(,f,  L;lt]or,lt[)ry,  (-,liil’f)rni,t  [nstit,  utc {)f’ l’(vlIIIology,  under  a
(.olttr;wr,  wit.  h I,hc.  ,Vatiofl<d  .\i.  rf)rtmlr.  ics anfl .SIJ,  NI! .\(lrr)  irlistr:lt ion.
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lation of co-channel digitally modulated (BPSK)  signals
in the presence of multipath. ) As evident from the model
described by Equation (1), each FM signal alone haa a
constant envelope and an instantaneous frequency which
is proportional to its modulating signal; on the other
hand, r(t) has a widely varying envelope and an instan-
taneous frequency which contains large spikes. A conven-
tional FM receiver containing a single PLL may be able
to correct for the varying envelope with the use of a hard
limiter, but the spikes will remain and ml (t), 7n2(t),  and
ml(t) + m 2 (t) are each unrecoverable. Ideally, ml(t) and
m 2 (t) are recovered separately, with no crosstalk between
the two.

There are several approaches to CCI suppression which
are based on either linear or non-linear processing. Linear
processing methods encompass narrowband linear filter-
ing as well as adaptive filtering techniques which suppress
interference based on statistical differences between the
interference and desired signal components. Examples of
adaptive interference suppression filtering techniques in-
clude linear prediction error filtering as well as “blind”
adaptive processing wherein linear filter coefficients are
adjusted to enhance certain properties of the desired sig-
nal (thereby suppressing the interference).

Non-1 inear techniques are usually based upon the “cap-
ture” effect wherein the strongest signal is enhanced by
some type of non-linearity at the expense of weaker sig-
nals which are suppressed. Since these techniques are de-
pendent on the relative amplitudes of the various signal
components, they can be utilized for separating multi-
ple componerlts  with highly overlapped spectra. Exanl-
ples include the F\l linliter/discriminator,  PLL, PTC [3],
CCPLL [2.6]. aIld m;~ximum likelihood (ML) -based tech-
ni(lllcs [1.;].

CCPLL  .AYD PTC METHODS
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Figure 1: CCPLL block diagram.

methods that exploit the capture property of the PLL to
separate co-channel signals. The CCPLL comprises two
PLLs: one used to capture the dominant signal and the
second to capture the sub-dominant (its architecture can
easily be extended to separate multiple signals). A simpli-
fied block diagram, based on the feed-forward, difference-
amplitude tracking topology developed in [7], is illus-
trated in Figure 1. We note that both PLLs are second-
order, incorporating proportional plus integral control,
and both Iowpass filters, used in generating the amplitude
estimates, are second-order digital Butterworth designs.

Although this method has been proposed for separat-
ing a wide variety of signals including CW, FM, ANI
and even digital signals, e.g., BFSK, we have found that
for qi.ses of co-channel signals with comparable modula-
tion parameters the CCPLL becomes less effective. As
an illustrative example, consider the case of two synthe-
sized voice signals (approximately 3.7 kHz bandwidth)
that are FM-modulated. The parameters from Equa-
t ion (1)  are  Al = 1, .42 = 0.5, kl = k2 = 2n(12kHz),
a n d  wl = W2 = O (i.e., baseband). Thus the weaker
(sub-dominant) signal is 6 dB below the dominant. The
signal tvas sampled at 131kHz.  Using the CCPLL design
rules developed in [6], we obtain sample computer simu-
lation results as depictetl  in Figure 2 for a three second
segmerlt.  Both the original and CC PLL-reconstructed es-
timates (demodulated by the PLLs) for the dominant and
sub-dominant synthesized voice waveforms are displayed.

Generally the CCPLL is able to separate the voice
waveforms reasonably well in this example. However,
close inspection of the various waveforms reveals certain
fe;~t,llres that, are c;lptured  either by the }vri)ng PLL or by
h(, fh PLLs Sinllllf,iLtl~ollSl~.  .~n examph!  of tile  liit,tf>r  is the
(Iist,irl(;t, l)tllse train occurring  in the doltlirl;lnt  wiiveforrn
( Figllr{! 2(;~) ) ;~t abollt t,h,: nlid(lle of t,ht, t.tlrtx, second seg-
r[lcnt (I)(ttwvx!rl  itpp[~~ir[l;tt(>l~ 1.4 iin(l [..1 s{)(onds).  T h e

(a) Dominant (original) speech signal.

(b) CCPLL estimate of dominant signal.

(c) Sub-dominant (original) speech signal.

(d) CCPLL estimate of sub-dominant signal.

Figure 2: Performance of CCPLL estimator on FM voice
signals, each with frequency deviation of 12kHz.

dominant CCPLL estimate (Figure 2(b)) captures this
feature but unfortunately so does the sub-dominant (Fig-
ure 2(d)). Vice versa at the end of the segment (between
approximately 2.8 and 2.9 seconds) the amplitude burst
in the sub-dominant waveform (Figure 2(c)) is captured
only by the dominant CCPLL estimate.

This phenomenon of “signal switching” is created by
a number of factors including instantaneous frequency
crossing which causes the individual PLLs to lock onto
and track the wrong signals. This problem is less severe
as the occurrence of instantaneous frequency crossings is
reduced. This situation can be simulated using the same
synthesized voice waveforms considered above in Figure 2
but using different FM modulation parameters. For ex-
ample, if we increase the FM deviation frequency of the
sub-dominant from 12 kHz to 24 kHz (with all other mod-
ulation parameters the same) and correspondingly open
up the PLL bandwidths (again following the CCPLL de-
sign rules provided in [6]), we obtain much better voice
separation ils seen in Figure 3.

Now  the objectionable signal switching has been sig-
nificantly reduced. Of course in practice the presence of
instantaneous frequency crossings in the input co-channel
data cannot be controlled. Thus the utility of the CCPLL
will generally be limited unless some means of compensa-
tion Ciitl be {Ievelopeci to mitigate the deleterious effects
of inst,ant,an(wtls frquency crossings. Possible methods
irlclll[l(:  tli(~ irtclusion of K;drrlan tracking techniques that
will  t,rii(:k l)r[~violls  PLL pll;tse f!st, imat, es and  use these
fxt, irnatw  to prevent sigtl;d phase switching. This is an
;w(I;l of ~;tlrr(>rlt. rfx(’:m.t).

Tllf’ PTC [3] :dso (orlll)ris~,s  two PLLs but, both are
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(;1) Dominant (originid)  speech  signal.

(b) CCPLL  estimate of dominant signal.

(c) Sub-dominant (original) speech  signal.

(d) CCPLL estimate of sub-dominant signal.

Figure 3: Performance of CCPLL estimator on FM voice
signals, with frequency deviations of 12kHz and 24kHz.

used to capture and lock onto the dominant signal, i.e.,
the first PLL captures the dominant while the second
further smoothens  the dominant phase estimate as well
as inverts its polarity (sign) so that it can be subtracted
from the IF input thereby recovering the sub-dominant.

The PTC provides an interesting alternative to the CC-
PLL in that it reduces the complicated nonlinear dynam-
ics inherent in the CCPLL. However, a key limitation is
that amplitude adjustment is required to obtain optimal
dominant signal cancellation at the IF. This is typically
performed manually which is a clear limitation in opera-
tional scenarios — especially in an amplitude-fading en-
vironment.

.4n example showing PTC performance, when the am-
plitudes of the co-channel signals are presumed known, is
presented in Figure 4 for a very short (50 msec) simulated
segment. In this example two synthesized voice signals
(approximately 3 kHz bandwidth) are FM-modulated and
linearly combined using the following parameters from
Equation (l): ,41 = 1, . 42 = 0.5, kl = 2~(70kHz),  k2 =
2~(14kHz),  WI =  2~(4i5kHz),  a n d  Wz =  2~(450kHz).
Thus, the sub-dominant IF bandwidth is considerably
smaller than the dominant IF bandwidth (approximately
~,jVO of the dominant barld~vidth), and the IF carrier f re -
quencies are chosen differently. So although there is still
significant spectral overlap between the two signals, this
example is not as stressing as the previo(ls twmples  (Fig-
Ilres 2 ;L[l[I 3).

Bl)ttl t he  o r ig ina l  an(l PTC-rf?c{)nst,rll{rt~ti  F!stinliltcs

((l~:lll~>,lul;it,t>[l  by t,hc PLLs)  f o r  the ,It,lilinallt  an(l sub-
(Iortli[lililt Synt,  tltxiztvl voi(:(! wawforrns ilrl’ (Iisplaye(l. .4S

(;[m t)(: S(:(!ll t.h(:rw i s  v i r t u a l l y  pcrfwt iLg[(’(’I[lC!nt  I)etwwen

(a) Dominant (original) speech signal.

d VWyINNLI@Jo *VIN
(b) PTC estimate of dominant signal.

11/N$il/Wkhv

(c) Sub-dominant (original) speech signal.

f\Mwh~y*t

(d) PTC estimate of sub-dominant signal.

Figure 4: PTC performance on FM voice signals.

the originals and their estimates. Additional simulation
experiments with comparable co-channel signal IF band-
widths reveal that the PTC remains very effective in
signal separation under the assumption of constant and
known signal amplitudes. The next step in our research
is to incorporate some form of dominant amplitude esti-
mation into the PTC structure.

M A X I M U M  L I K E L I H O O D

In the case of no interference (A2

Cahn [1] derived an approximation

S E P A R A T I O N

= O in Equation (l)),

?(t) = Al COS(bJIt + @l(t))

of r(t) by minimizing J lit(t) – r(t)112dt subject to the
constraint that within successive time intervals of dura-
tion At, @’(t)  is a constant and equal to either –C or C.
That is, the second derivative of the phase is quantized
and  used to derive d(t), which in turn is used to determine
?(t). Achieving the closest approximation of r(t) requires
the proper estimation (quantization) of ~“(t).  Since ~(t)
clepends not only on #“(t)  but also on ~“(s), s < t, the
estimator needs to contain memory. For example. each
stat,e of ii 16-state trellis corresponds to a quantized value
(*c) of (Y’(t),  O“(t - At), O’f(t - 24t),  and @“(t - 3At),
where 4t is the sampling period.

Tile Vitl:rhi  algorithm chooses one of two values for
~“( t) irl prf,(isely  the same  way that a rnaxirnllnl  likeli-
h(N)fl s(I(I{l(’llc(!  estimator chooses between demodulated
Ijir.s () {jr 1. T1lus, this is a rn;lxirnum likelihood (!st,imate
of r(t), l)roviihvl  the (:orwtraint.  H“(t)  = *C is ;u1 ;wcurate
011(!.
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\Vl! l,xt(vltl Ukllll’s  i(l(!il to ttl(! (2$(!  0[ .4u # O by j o i n t l y

~:stitil;lti[lg #1 (t) atl(l dz(t).  Th;lt is, r(t) is [!stimatcd  by

i(t) = .4, Cos(uit  + 4L(t))  + .-i~ Cos(w.’t + J2(t)),
(2)

an(l nlik~imurn  likelihood estimation is ptxforrned  as be-
for~!.  Tile new trellis size for joint estimation is the square
of Cidlrl’s trellis size. However, the increiuw  in computing
power since Cahn’s  1974 paper has allowed us to sirnu-
Iate three bits of memory for each signal (64 states) with
excellent results.

The algorithm is implemented in ii discrete environ-
ment. tVe define the discrete versions of the functions in
the usual way, i.e., r[n] = r(rrAt), tl[n] = 6’(r~At), etc. To
determine F[n],  the following update equations are used,
for i = 1,2:

ej[n] = @![n - I] + @:[n]At

di[~] = t$i[n - 1 ] +  ~~[n]At + e~[n](At)2/2,

and ?[n] is determined from Equation (2).
Because of the quite general modeling of the received

waveform, this technique is potentially applicable to a
wide class of CCI  problems, including both analog signals
(FivI,  PM) and digital signals (FSK,  MSK, PSK, QAM,
etc.)— indeed, any signal which can be written in the
form of Equation (l). The Viterbi  algorithm merely at-
tempts to approximate the received signal by the sum of
two waveforms; it requires no knowledge of the modula-
tion or timing of the waveforms. Incorporation of this
knowledge allows improved performance for specific ap-
plications such as BPSK/BPSK interference, which will
be discussed in the following section.

Figure 5 indicates the performance of the joint Viterbi
algorithm on co-channel FiM voice signals. The modu-
lating signals are synthesized voice, and the parameters
chosen are identical to those used in Figure 2. That is,
the subdominant signal power is 6dB below the dominant
signal power, the frequency deviation is 12kHz for each
signal, and there is no carrier offset for either signal, i.e.,
}ve assume the carrier has already been removed. The
received signal was again sampled at 131kHz.  As can
be seen, nearly all features of each signal  are recovered
and separated into the dominant and subdominant sig-
nals, with virtually no signal switching occurring. This is
especially significant in view of the fact that the modulat-
ing signals are statistically identical, and equal  frequency
(lt~viar.ions  are used. LVhen  real voice signals are used,
both signals are easily  intelligible, with the dominant sig-
tlal slltfering  almost no (Iegra(lation  in SOUII(I quality. The
([lmlity  of the subdorninilrlt  Signid  is s~lti(!i~hi~t, degraded.

FiglIre 6 indicatx!s  r,h(! pwformance  of tiI(! joint Vit(~rbi
;dgorit.tlr[l  011 BF.SK (:() -( ’hitIlrlel interfering signals. The
[Ilo(llll:lting  sigluds  ar(: (letermind  fro[~l in(leperld[!nt,

(;~) Dominant (original) speech signal.

(b) .Joint Viterbi  estimate of dominant signal.

(c) Sub-dominant (original) speech signal.

(d) Joint Viterbi estimate of sub-dominant signal,

Figure 5: Performance of joint Viterbi estimator on CCI
FM voice signals.

Clean estimate  of C)Omnanl and  hard Iimled)

E

Clean .3Stmate of subdominants!  al (mown avefa  d and  hard  hm!ted)

~wm
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Figure 6: .Joint Viterbi  estimation of CCI BFSK signaJs.

uniformly distributed bit streams. each at a baud rate of
10,000 bits per second. .4 rectangular pulse shape is used,
and the interfering signals were offset by 1/4  bit. The
parameters used in Equation (1) are .41 = 1, .42 = 0.5,
k~ = k~ = 2ir(5kHz).  and WI = wz = O. The received
signal  was sampled  at JokHz,  i.e., there were 4 samples
per bit. .$s can be seen, the raw output of the Viterbi
algorith m rf!covers  much of the information of the origi-
nal signals: when a moving average and hard limiter are
applitxl  tht! original and estimated signals match almost
p(:rffxr,ly.

[n [)r’il(ti(’(i.  the recclver  (kJ(w .Iwt hiive a p r i o r i  knowl-
e(lgf: of .-11 ;ul(l . 42 , a n d  th(v+: (Ill;mtities  must also be
(xitit[iitt,(,(l  itt the receivt!r.  \V(O IIS(:(l the LYIS a l g o r i t h m
(,[)  il(lil[)t,  iVl![y l!st. irniltt’  . 4  ~ tl[l[l .-1?. T(J irnprwe perfor-
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Figure 7: Amplitude estimates for two statistically iden-
tical FYI voice waveforms. The true amplitudes were con-
stant, as shown.

mance, the estimates were updated in per-survivor pro-
cessing (PSP) fashion, i.e., separate estimates were stored
at each state of the trellis, instead of one estimate at each
time step [4]. We found that the estimates accurately
track the true values, as shown in Figure 7. (In this case,
the estimate itself is quite good but can be improved fur-
ther by applying a moving average to the estimate.) As a
result, there WM virtually no difference in the quality of
the $(t)  estimate when working with known amplitudes
or estimated amplitudes. This method also tracks ampli-
tudes which vary slowly in time.

It is clear how this joint estimator may be extended
to more than two interfering signals with the addition
of more trellis states. Since the trellis size grows expo-
nentially in the number of interfering signals, there is a
practical limit to the model, however.

M A X I M U M  L I K E L I H O O D  D E M O D U L A T I O N  O F

B P S K  S I G N A L S  I N  T H E  P R E S E N C E  O F

M U L T I P A T H  AND C O- CH A N N E L
INTERFERENCE

Here we briefly discuss the application of ?vIL-based
metho(ls  to the demodulation of BPSK  signals in the
presence of multipath and co-channel BPSK  interference.
In particular, we consider further the joint trellis algo-
rithm originally presented in [5] as it applies to co-channel
BPSK  demodulation and channel estimation in the pres-
ence of static and fading multipath. This algorithm rep-
resents ii significant departure from the joint Viterbi  algo-
rithm presented above in rhar, it estimates the data sym-
bIJk (Iir’(!ct,ly  its oppose(i  to t,hc (contirltlolls-time)  p h a s e
wav(;fr)rrns.  Th(> U[l({crlvirlg syst,t:rrr assunw(l  here is mwl-
(:10(1 Lls ;t })illl(i-sp~(.t} [l, or ‘T-spil~~(l, bast; lxlml digital COIII-

rnlll~i(:;  tt, iorl  syst, tvn, i.e., r,h(: BPSK (Iat;i syrnhols for’ both
the d(’sirtxi si~n;d ;m(i int(’rfc!rtx  iir(: t,ratlsrllitte(l  in a T-
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Figure  9: Static channel bit error rate results for both a
joint ancl single trellis demodulation algorithm.

spaced data sequence. The corresponding envelope of the
received signal is formed by convolving both desired and
interference BPSK waveforms with generally different T-
spaced channel impulse responses (CIfi) and then lin-
early combining the convolved waveforms. It is assumed
(at least initially in our studies) that no additive noise is
present and that the received desired signal and interferer
are synchronous and that perfect symbol timing is avail-
able. Performance metrics are the bit error rate (BER)  of
the desired signal and the received signal-to-interference
power ratio (SIR).

Two simulation examples are considered here. The first
corresponds to a static multipath environment wherein
both the desired and interference multipath channels are
modeled by a T-spaced CHR with two equal non-zero taps.
The tap value for the desired multipath channel is unity
whereas the corresponding value for the interference chan-
nel is varied to achieve different values of SIR. Plots of
BER versus SIR are presented in Figure 8 corresponding
to both a joint trellis algorithm (with 2 states allocated
each to the desired signal and interferer for a total of
z x 2 = ~ states) and a single  trellis algorithm (modeling
only the desired signal with a total of 2 states). Both
algorithms are initialized with a single (2 state) trellis
which is trained using a known, desired signal sequence.
The purpose of this training interval is to obtain an es-
timate of the desired multipath taps. Then, in the case
of the joint trellis algorithm, the trellis is expanded to
4 states after the desired signal training sequence in or-
der to estirrlilte  the interference multipath channel (in the
blind) iin(l in the process demodulate the desired BPSK
Sigllill,

.-!s i s  s(vrl frorri  Figllrc  ,S. the ,joint tr~llis  algorithm
[)1’IJVI({(’S ii B ER < 3% :~t ;dl SIRS between -1 im(I 10 cIB.
How[:v(!r. ,)[1(:{:  t.tle S[R tvw!~vls  i’ (lB, th(! single t r e l l i s
ollr,ljt,tt’or[ll.s  r.hc joint tr(~llis iLIl(] S O  i t  i s  bf:t,kr  to dis-
[:;wrl t.tlu St,it Ll!S illlo(’il[(’(1  to t.ll(!  irlterfercr’  onct! i ts  power
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Fading channel bit error rate rcs{llts for both a
single trellis denmdulation algorithm,

falls below a certain (threshold) level. This behavior is a
consequence of the initialization process described above,
i.e., once the interference power becomes too small the
resulting estimate of the interference multipath channel
(derived blindly by the joint trellis) is too noisy to yield
good demodulation of the desired signal and hence the
single trellis algorithm provides the best performance.

Similar results are obtained in a simulated slow
Rayleigh  fading multipath environment wherein both the
desired signal and interference channels are modeled by
independent, three tap (T-spaced) channels. Each tap is
fading independently with the same average power. The
average tap power is unity for the desired signal channel
and is varied for the interference channel to achieve dif-
ferent values of average SIR. Plots of BER versus SIR are
presented in Figure 9 corresponding to both a joint trel-
lis algorithm (with 4 states allocated each to the desired
signal and interferer for a total of 4 x 4 = 16 states) and a
single trellis algorithm (modeling only the desired signal
with a total of 4 states). Both algorithms are initialized
as described above (but using 4 states per co-channel sig-
nal instead of 2 states). .Again it is seen that the single
trellis algorithm outperforms the joint t,r~!llis when the
SIR exceeds a certain level (12 dB in this case).

C O N C L U S I O N S

The CCPLL is e~trenwly  effective at separating an FhI
wicc signal frwm an unmodulated ci~rli(~r  signal. but it
suffers from occasional ‘signal  switching”’ if the subdom-
inant signal  has modulation paramet(vs very similar to
those  of t,hc dominant, signal. The PTC also separates
F\[ voi(c  signals v(~ry WVJII for the C;M,S tested, bllt  in
its [)[(’s(’[1(  Sf,  ilt, (!, it, is of lilllit(vl j)r; t(; t,i(’; li Iltility  b(X; allSr_!

,1 [)[i(jri  ktl(~~vl(,(lg(! or ;1 I[li L[lllil[  (!st, il[lilr(,  ot” tll(! [h>nli-
II; l[lt Si:n:d  iutlp]it,ll(i(!  is r(w[tlir(vl.  T;vI)  t’(,rsiotls  of ;L ,j(~int
L’il,(’rl)i  ;dg(}ritlllIt ~v(;r(,  [Jr(w!llt(l(l. TlitI tirst is h;x-xxl on
~;Lllll’S  ql[)r~);utl (1! ;m(l (:UL lx: ;Lppli(,([ t,, ii wi(le v;lrict,y

()[ ;LIl;  dog  ;trl(l f[igit,;ll SigrlillS.  RcSIIltS  with this algorithm
(Isillg it Wst;tt(: trellis reve;d(xl  very go(xl ckmo(lulation
of (Iigit, itl LIFSK signi~ls  ;m(l f(lrthtxmore  yield co-channel
Fh[ voic(! s(’paration  without the “signal switching” aSSO-

ci;~t(xl with th~! CCPLL.  Tht! second type  of joint Viterbi
;dgorithm  considere(i  [5] yielcls direct data symbol esti-
nli~t(!s in multipath environment, s. The application of this
algorithm to both static and fading multipath channels
rew!als that. once the interference power falls below a cer-
tiiin threshold level, it is better to discard the joint trellis
;ux:hit,  ect,urc and just model the desired signal states.
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